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Abstract
The amplitude–phase formulation of the Schrödinger equation is investigated
within the context of uncoupled Ermakov systems, whereby the amplitude
function is given by the auxiliary non-linear equation. The classical limit of
the amplitude and phase functions is analysed by setting up a semi-classical
Ermakov system. In this limit, it is shown that classical quantities, such as the
classical probability amplitude and the reduced action, are obtained only when
the semi-classical amplitude and the accumulated phase are non-oscillating
functions respectively of the space and energy variables. Conversely, among
the infinitely many arbitrary exact quantum amplitude and phase functions
corresponding to a given wavefunction, only the non-oscillating ones yield
classical quantities in the limit ¯h→ 0.

PACS numbers: 02.30.Jr, 02.30.−f, 03.65.−w

1. Introduction

Systems of the form

∂2
t u(t) + k2(t)u(t) = 1

ρu2(t)
Y (α(t)/u(t)) (1)

∂2
t α(t) + k2(t)α(t) = 1

uα2(t)
Z(u(t)/α(t)) (2)

whereY andZ are arbitrary functions of their arguments, are generically known as Ermakov
systems. They are characterized by the existence of a first integral, the Ermakov (or Lewis–
Ray–Reid) invariant linking the solutions of equations (1) and (2), thereby giving rise to the
so-called non-linear superposition principle. Intensive studies of their properties, such as their
linearization [1] or their generalization to higher dimensions [2, 3], have been undertaken to
extend the remarkable results concerning uncoupled systems, i.e.Y (ζ ) = 0 andZ(ζ ) = a2ζ

wherea is a constant, obtained by Ray and Reid [4, 5].
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Although the paradigm in physical applications of uncoupled Ermakov systems has been
the classical linear time-dependent harmonic oscillator (t being the time variable), where
the full power of Hamiltonian structure [6], Lagrangian mechanics and Noether symmetries
[7] have been employed, it has also been remarked that uncoupled systems link the time-
independent linear Schrödinger equation to a non-linear ‘auxiliary’ equation in the following
way:

h̄2∂2
xu(x) + p2(x)u(x) = 0 (3)

h̄2∂2
xα(x) + p2(x)α(x) = h̄2a2

α3(x)
(4)

wherex refers to the space variable, andp(x, E ) to its conjugate momentum in classical
mechanics.E is the energy, assumed to be conserved, of the system. We have recently shown
[8] that the non-linear equation (4) corresponds to the equation for the amplitude functionα(x)
in the amplitude–phase formulation of the Schrödinger equation, which arises by performing
a so-called Milne transform on the wavefunction; the phase functionφ(x) is obtained by
integrating the relation∂xφ = α−2 (see section 2).

We shall be concerned throughout this paper by the oscillatory properties of the solutions
of the uncoupled Ermakov system formed by equations (3) and (4) in the specific case of
a potential energy function having a single minimum. Actually, since equation (3) defines
a Sturm–Liouville problem, the oscillatory properties of the solutions are well-known [9],
and we will restrict our analysis to the oscillations, as a function ofx and E, of the
amplitude and phase functions. Our first aim will be to show that absolutely smooth, that is
non-oscillating, amplitude–phase functions, can be constructed. Let us recall that the
amplitude–phase formulation of the one-dimensional Schrödinger equation is frequently
used in quantum scattering theories that explicitly include closed channels, such as
quantum defect theory (see [8] and references therein). In these situations, it is of
prime importance forα (x, E) to be a smooth function of both the space (usually radial)
coordinatex and the energyE, since the scattering parameters (e.g. the phase shifts) are
defined in terms of amplitude–phase functions. However, by the principle of non-linear
superposition (section 2.1),α may be expressed in terms of two independent solutionsu1
and u2 of equation (3)—solutions which as known oscillate between the turning points
of the potential. It follows thatα(x) generally oscillates between the turning points. In
practical implementations of amplitude–phase formalisms, numerical methods aiming at
minimizing the amplitude of the oscillations have been devised. We have proposed in
[8] such a method based on the invariant and the non-linear superposition principle in
the context of Ermakov systems. Here, the main point to be examined consists in the
relationship between non-oscillating amplitude–phase functions and the functions obtained
in the semi-classical(h̄ → 0) limit. More specifically, we will prove that in this limit,
the only non-oscillating solutions are the ones that yield classical quantities: in particular,
the only semi-classical phase function that does not oscillate is the classical reduced action,
and conversely the quantum continuation, for finite ¯h, of the classical reduced action is a
non-oscillating function.

To this end, some properties of amplitude–phase functions, their behaviour as a function of
x andE and their connection with Ermakov systems will be recalled in section 2. In section 3,
we shall discuss semi-classical amplitude–phase functions by setting up a semi-classical
Ermakov system; the classical probability amplitude and reduced action will appear as a
particular solution of the semi-classical amplitude and phase functions. These results will
then be employed in a formal ¯h expansion of the quantum amplitude–phase functions, to prove
that provided the first-order functions are non-oscillating, the solutions to each order in ¯h will
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then not oscillate (section 4). This will be followed in section 5 by a discussion of the results,
in particular in relation to quantization of classically integrable systems.

2. Amplitude–phase functions

Our concern here will be the ‘auxiliary’ amplitude and phase functions of the Schrödinger
equation (3), withp2(x) = 2m(E−V (x)), i.e. a particle of massm and energyE trapped in a
potential wellV(x) having a single minimum.V(x) is defined on an interval ]s1, s2[ (typically
s1,2 = ±∞ or 0). Atomic units will be used throughout, except for the ¯h factors which will
be re-established where appropriate.

2.1. Non-linear superposition principle

We discuss in this section the main results concerning amplitude–phase functions that will
be useful in what follows, omitting details (for more details and the relevant references, see
[8]). Equation (3) defines a Sturm–Liouville problem, typically a singular problem on the half
line or real line when vanishing boundary conditions ats1 ands2 are implemented. However,
our interest lies not in the specific eigenfunctions or eigenvalues of the Schrödinger equation,
but in relating linearly independent solutions of the linear equation to amplitude and phase
functions. We will denote byu1 andu2 two independent solutions of equation (3), respectively,
regular ats1 ands2 and with WronskianW = W [u1, u2] ≡ (∂xu1)u2 − u1(∂xu2) .

A general solutionu(x) of equation (3), which is readily written in terms of the independent
solutionsu1 andu2, may also be obtained as

u(x) = b1α(x) sin[φ(x) + b2] (5)

whereb1 andb2 are complex constants. A straightforward substitution in equation (3) leads
to the two equations

∂2
xα(x) + p2(x)α(x) = α(x) [∂xφ(x)]2 (6)

α2(x) = a

∂xφ
(7)

where we can seta2 = 1 without any loss of generality (sincea2 can be absorbed intoα
by redefiningα → α/a1/2), thus recovering equation (4). For obvious reasons,α andφ are
known respectively as the amplitude and phase functions. In terms ofu1 andu2, it follows
from standard results on Ermakov systems that the general solution forα is given by

α(x) =
[(

1

2I
+ 2Ic2

)
u2

1(x) +
2I

W2
u2

2(x)−
4Ic

W
u1(x)u2(x)

]1/2

(8)

and the equation for the phase is readily integrated to give

φ(x) = arctan

[(
1

2I
+ 2Ic2

)
W
u1(x)

u2(x)
− 2Ic

]
+ arctan 2Ic (9)

where the integration constant is chosen so thatφ(s1) = 0. Equation (8) is an illustration of
the non-linear superposition principle [7].I andc are two constants, independent ofx (I is
the Ermakov, or Lewis–Ray–Reid, invariant). Note that the value of the phase function ats2,
known as the accumulated phase, does not depend on the constantsI andc for the eigenvalues
E0 of the Sturm–Liouville problem, since

φ(s2, E = E0) = πn (10)

φ(s2, E �= E0) = arctan[2Ic(E)] +
2n + 1

2
π. (11)
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Heren is an integer giving the number of nodes ofu2. Note also thatα(x1) is independent of
c if x1 is a zero ofu1.

2.2. Boundary conditions and energy dependence

The boundary conditions forα andφ are therefore incorporated through the parametersI (E )
andc(E ), which as indicated depend on the energy. Normalization of the eigenfunctionsf of
the Sturm–Liouville problem with vanishing boundary conditions ats1 ands2, yields∫ s2

s1

f 2(x) dx = I∂Eφ(s2, E = E0). (12)

By choosing the eigenfunctions to be normalized per unit energy increment,I becomes an
energy-independentpositive constant, and amplitude and phase functions depend on the single
parameterc(E ).

We now introduce another solutiong(x) of the Schr̈odinger equation (3), defined in terms
of the solutions regular ats1 ands2 as

g(x, c) = 2I

(
u2(x)

W
− cu1(x)

)
(13)

which fulfils W [u1, g] = 2I and givesα(x) = [ 1
2I (u

2
1(x) + g2(x))]1/2. This simply means

that u1 andg lag π/2 out of phase, and that with the conventions of section 2.1 (a = 1 and
φ(s1) = 0), we have

u1(x) =
√

2Iα(x, c) sinφ(x, c) (14)

g(x, c) =
√

2Iα(x, c) cosφ(x, c). (15)

We have emphasized thec-dependence of the different functions (though self-consistency
requires it, it may be checked explicitly thatu1 does not depend onc).

2.3. Oscillatory properties

2.3.1. Oscillations of the amplitude. Let t1(E)(t2(E)) be the inner (outer) turning point. For
values beyond the turning points (whenx < t1 or x > t2), we recast equation (6) as

1

2
〈φ; x〉 = p2(x)− α−4(x) (16)

where〈φ; x〉 ≡ ∂3
xφ/∂xφ − 3

2(∂
2
xφ/∂xφ)

2 denotes the Schwartzian derivative. Sinceα is a
positively defined quadratic form andp2(x) < 0 beyond the turning points, the Schwartzian
derivative of the phase is negative, and as it can be verified, if〈φ; x〉 < 0 on an interval
then∂xφ cannot have a positive local minimum on this interval, i.e.α cannot have a local
maximum. By noting thatα(x) → +∞ whenx → s1 andx → s2, we conclude that ifα
does not oscillate between the turning points, it will not oscillate on the whole interval ]s1, s2[.
Note that there is then a unique valuex0, with t1 < x0 < t2, such that∂xα(x0) = 0.

However, asu1(x) and u2(x) oscillate for t1 < x < t2, α will generally oscillate, by
virtue of the non-linear superposition principle equation (8), between the turning points, the
local wavelength being half that ofu1 or u2. Nonetheless, at a specified energy, there may
be infinitely many values ofc giving a non-oscillating amplitude function1. We give in the

1 For example, taking the second derivative ofα, it is seen that any value ofc enclosed betweenc±(x), with
c±(x) = u2(x)[Wu1(x)]

−1 ± [2Iu1(x)]
−1[2I/p(x)−u2

1(x)]
1/2 and wherex spans the interval between the turning

points, will suffice.
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following sections a sufficient (but not necessary) condition forc(E ), that is the value ofc
and its explicit energy dependence, because this value has remarkable properties related to
classical quantities in the semi-classical limit, as will be seen in section 3.

2.3.2. Inverted phase accumulation. Proceeding as in section 2.1, we can define a phase
function φ̄(x) such thatφ̄(s2) = 0, i.e. the phase starts accumulating ats2 instead ofs1. As
can be easily seen, this amounts to an exchange of the roles ofu1 andu2; for instance, we now
haveu2 = b2ᾱ sinφ̄, where∂xφ̄ = ᾱ(x)−2 andb2 is a constant to be set below. ¯α is given by

ᾱ2(x) =
(

1

2I
+ 2I c̄2

)
u2

2(x) +
2I

W2u
2
1(x) +

4I c̄

W
u1(x)u2(x) (17)

with W [u2, u1] = −W and where we assumedI = Ī for simplicity. Generallyα(x, c)
and ᾱ(x, c̄) are very different functions (e.g. the ¯c independent points of ¯α are now
located at the zeros ofu2). Notwithstanding, it is apparent thatα(x, c) = ᾱ(x, c̄) iff
c2 = c̄2 = W−2 − (2I)−2 and ¯c = −c. We shall set

c0(E) = −[[W(E)]−2 − [2I ]−2]1/2. (18)

To keep the quadratic form real we shall setW2 < 4I2, a condition to be assumed in the
rest of the paper (this is not a problem in practice becauseα andφ are left unchanged by
the transformationsu1 → κu1, W → κW , I → κ2I , c → c/κ2, so the Wronskian can be
conveniently rescaled).

Let us now suppose thatc = −c̄ = ±c0. We then haveα = ᾱ. b2 is found by evaluating
W [u1, u2] at s2, which yields, by choosing a proper sign convention,b2 = √

2I . From
equations (13)–(15), it follows that

sinφ̄(∓c0) = W
[
cosφ(±c0)/2I ∓ [W−2 − (2I)−2]1/2 sinφ(±c0)

]
(19)

thereby obtaining the relation betweenφ andφ̄, which gives the oscillations ofu1 andu2 only
if α does not oscillate.

2.3.3. Auxiliary quadratic form on the unit circle. α2(x) is a positive definite quadratic
form. Labelling M the matrix of the coefficients, we have detM = W−2 and TrM =
1/2I + 2Ic2 + 2I/W2. α2(x) can be reduced to the canonical form

α2(x, c) = λ1(c)v
2
1(x, c) + λ2(c)v

2
2(x, c) (20)

whereλi(c) are the eigenvalues ofM(λ1 � λ2) andvi(x, c) are the eigenvectors, normalized
so thatv2

1(x, c) + v2
2(x, c) = u2

1(x) + u2
2(x). We now introduce a quadratic formQ defined as

Q(x, c) = λ1(c)w
2
1(x, c) + λ2(c)w

2
2(x, c) (21)

wherew2
i (x, c) = v2

i (x, c)[u
2
1(x) + u2

2(x)]
−1. As indicated,Q, as well as theλi andvi are

c-dependent.Q oscillates between its maximum and minimum values, which are by
construction given respectively byλ1 andλ2.

We now setc = ±c0. Let x1 (x2) label the points whereu1 (u2) vanishes; we then have
Q(x1,2,±c0) = 2I/W2, so that between two zeros ofu1 andu2, Q(x,±c0) has at least one
extremum on the unit circle (for these points, the equalityu2

1(x) = u2
2(x) is fulfilled). Note

thatα(x, c = ±c0) goes through both thec-independent points ofα (x, c) andᾱ(x, c̄), so if
α oscillates, then there is an extremum ofα betweenx1 andx2, and the sign of∂xα alternates
between the consecutive zeros ofu1 andu2. This is illustrated in figure 1 for the specific
case of the harmonic oscillator (to be discussed in details in section 5.4); the zeros ofu1 and
u2 are respectively shown as triangles and rectangles. Note also that the maxima ofQ(c0)
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Figure 1. Q(c0) (broken line, left scale),α(c0) (non-oscillating solid line, right scale) andα(−c0)
(oscillating solid line) are plotted for a harmonic oscillator (atomic units andω = 1, n(E ) = 4.4,
see section 5.4 for the definitions). All amplitude functionsα (c) for anyc go through the pointsx1
(triangles), and any function ¯α(c̄) goes through the pointsx2 (rectangles). Only the two functions
α(±c0) go through both the pointsx1 andx2 . SinceQ oscillates andQ(x = x1,2,±c0) = 2I/W2

is constant,∂xQ has opposite signs atx1 andx2 as may be seen in the figure. This is also the case
for α(−c0) (solid line) which therefore oscillates, but not forα(c0).

correspond to the minima ofQ(−c0), sinceQ(−c0) = Q̄(c0). Combining equations (20)
and (21) and taking the derivative∂xα(x1,2) as a function of∂xQ, Q, u1 andu2, it can be
seen indeed that forc = −c0 the sign of∂xα at two consecutive zeros,x1 andx2, alternates.
However, forc = c0, the sign of∂xα between two consecutive arbitrary zeros ofu1 andu2
does not change, and thusα(c0) does not oscillate2.

2.3.4. Oscillations of the accumulated phase. We have explained in [8] why obtaining non-
oscillatory functions is important when amplitude–phase methods are employed in scattering
theory. The goal was to extend energy normalization, which for the eigenfunctions of the
Sturm–Liouville problem is given by equation (12), to functionsf (x) which converge ats2
but diverge ats1 (the phase-shifted or scattered wavefunctions). By combining the continuity
equation for the probability density and L’Hôpital’s rule, improper energy normalization is
defined as ∫ s2

r

f 2(x,E) dx = I∂Ec

(
1

2I
+ 2Ic2(E)

)−1

(22)

wherer is a cut-off radius (and as above,I is assumed to be energy-independent). This
normalization is of course arbitrary, since it is governed byc(E), but it conditions the energy
dependence of the different scattering parameters. In particular, the accumulated phase,
which is unambiguously defined (equation (10)) for the eigenfunctions of the Sturm–Liouville
problem, crucially depends (equation (11)) on the normalization whenE is not an eigenvalue.

More precisely, let us assume the eigenvalues of the Sturm–Liouville problem to be given
by E0 = ξ(n), wheren is the number of zeros of the corresponding eigenfunction (thus,

2 We noted, however, that given the behaviour of the amplitude function ats1 ands2, there is necessarily a point
betweent1 andt2 where∂xα vanishes. The argument sketched here relies on the signs of the basis functionsu1 and
u2 and their derivatives whenV(x) is monotonous on a full cycle of oscillation of the basis functions, and excludes
the neighbourhood around the bottom of the potential, where∂xα changes sign (but∂xα does not vanish exactly at
the bottom of the potential, as would be the case in the WKB approximation).
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of u2), andξ(n) is ana priori arbitrary, but monotonous function admitting a differentiable
inverse,n(E) = ξ−1(E). The functional relation betweenE0 and integer values ofn is thereby
extended to any energyE lying between two eigenvalues, i.e.E = ξ(n), n real. The energy
dependence forc(E) can now be chosen so as to extend the normalization of the eigenfunctions
to non-integer values ofn by equating equation (22) toIπ∂Eξ−1(E) (cf. equations (10) and
(12)), yielding

c(E) = − 1

2I
cotπξ−1(E). (23)

Substituting in equation (11) gives the following expression for the accumulated phase:

φ(s2, E �= E0) = πξ−1(E) ≡ πn(E). (24)

Thus the accumulated phase does not oscillate as a function of the energy (it is a simple straight
line as a function ofn) and the value ofc given in equation (23) is the only value compatible
with energy normalization leading to a non-oscillating accumulated phase function. We shall
mention in section 5.3 the relation the specific form (24) has with the canonical action variable
in classical mechanics. Note finally that, provided the basis functionsu1 andu2 are redefined
so that their Wronskian is proportional to 2I sinπn(E), equation (23) becomes a particular
form of the more general equation (18): with such a choice, the amplitudeα is a non-oscillating
function ofx and the accumulated phaseφ(s2) is a non-oscillating function ofE.

3. Semi-classical Ermakov system

3.1. Asymptotic solutions to the linear equation

The approximate solutions to the one-dimensional Schrödinger equation when ¯h→ 0 are well
known from the asymptotic theory of ordinary linear differential equations [10]. It follows
from section 2.3.1 that it is sufficient to consider the solutions between the turning points (i.e.
for realp(x)). Real solutions are of the form

ũ(x) = a1√
p(x)

sin

[
±
∫
p(x ′) dx ′ + a2

]
(25)

wherea1 anda2 are constants. Tilded (˜) quantities will henceforth denote asymptotic (semi-
classical) functions when these are to be distinguished from the corresponding exact quantum
solutions. It is well known from the Hamilton–Jacobi theory that

S(x,E) = ±
∫
p(x ′, E) dx ′ + a2 (26)

whereS(x,E) is known as the Hamilton–Jacobi characteristic function or reduced action: the
characteristics in phase space are made up of the points(x, ∂xS).

3.2. Ermakov system

By direct substitution of a general asymptotic solution into the Schrödinger equation, and by
labellingα̃ andφ̃ the semi-classical amplitude and phase functions, we obtain a semi-classical
Ermakov system

h̄2∂2
x ũ +

[
p2(x) +

h̄2

2
〈S; x〉

]
ũ = 0 (27)

h̄2∂
2
x α̃

α̃
+

[
p2(x) +

h̄2

2
〈S; x〉

]
= h̄2 (∂xφ̃)2 (28)
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where again the bracket〈 ; x〉 denotes a Schwartzian derivative and we have, as for the usual
amplitude–phase functions, ˜α2 = ã/∂xφ̃ and thus∂2

x α̃/α̃ = −〈φ̃; x〉/2. Equations (27) and
(28) are the semi-classical version of the quantum system given by equations (3) and (4).
Equation (27) is the modified Schrödinger equation exactly obeyed by the semi-classical
wavefunctions, and equation (28) is the non-linear equation fulfilled by the semi-classical
amplitude function. The passage from the exact (quantum) Ermakov system to the semi-
classical one simply consists in a redefinition of the potential energy function,which is identical
if 〈S; x〉 vanishes. Although generally〈S; x〉 is non-zero (except for the free particle),〈S; x〉
does tend to zero or to a finite value in the limit of high quantum numbers (e.g. the harmonic
oscillator for the former, the centrifugal Coulomb potential for the latter). Only if this value is
negligible compared to the other terms in the energy function does the high quantum numbers
condition fit with the semi-classical limit.

3.3. General solutions

α̃ andφ̃ are given in terms of two independent functions ˜u1 andũ2 of equation (27) by the same
relations, equations (8) and (9), as in the exact (quantum) case, with now tilded quantities. It is
convenient, however, to set the tilded constants ˜a, Ĩ andW̃ equal to their quantum counterpart
a, I andW. This is done by first noting thatW [α sinφ, α cosφ] = a, which we then set equal
to W [α̃ sinφ̃, α̃ cosφ̃], so ã = a = 1. To preserve the Wronskians (cf. equations (14) and
(15)), the semi-classical function ˜u1, of the form given by equation (25), is thus set as

ũ1(x) =
√

2I

p(x)
sinS(x) (29)

where we have implicitly includeda2 in the reduced action so that ˜u1 is the asymptotic
approximation tou1 in the neighbourhood of an arbitraryx lying between the turning points.
An independent solution ˜u2 with WronskianW [ũ1, ũ2] = W is then obtained under the form
cos(S(x) + b)/

√
p(x) as

ũ2(x) =
√

2I

p(x)
κ cos

[
S(x) + arccos

W

2Iκ

]
(30)

where we have introduced the scaling factorκ to keep all quantities real. In what follows, we
shall setκ = 1, which is tantamount to rescalingu2 (a similar rescaling was performed in the
quantum case, see below equation (18)).

3.4. Non-oscillating solutions

Substituting equations (29) and (30) in the expression for ˜α readily yields

α̃2 = 1

p(x)

[
4I2W−2 sin2 S(x) + (cosS(x)− 2Ic sinS(x))

×
{
cosS(x)− 2I

(
c +W−1[4 −W2/I2]1/2

)
sinS(x)

}]
(31)

which is a highly oscillatory function for an arbitrary value of the parameterc. However,
it may be noted by inspection that forc = −[W−2 − (2I)−2]1/2, the oscillating terms are
cancelled out. Remark that this is the same expression that was labelledc0 in the quantum
case (equation (18)). Re-establishing ¯h, the amplitude now reads ˜α2(c0) = h/p(x), which
given our assumptions is a non-oscillating function ofx. Identical substitutions may be done
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for φ̃, from which it follows that the semi-classical phase function is highly oscillatory for an
arbitrary value ofc except ifc = c0, and in that case,

φ̃(x, c0) = S(x)/h̄. (32)

In short, non-oscillating functions are obtained for a unique value of the parameterc, for
which the semi-classical quantities match their classical counterpart (

√
h̄/p(x) andS(x)/h̄

are respectively the classical probability amplitude and phase functions). Writing equation
(28) as

h̄2

2
[〈φ̃; x〉 − 〈S; x〉] = p2(x)− h̄2

α̃4 (33)

means that each side of the non-linear equation of the semi-classical Ermakov system vanishes
independently. Note also thatp2(x) + h̄2〈S; x〉/2 = h̄2〈tanφ̃(c); x〉/2 (this is established by
using the M̈obius invariance of the Schwartzian derivative and establishing ac-dependent
linear transformation relating tañφ(x, c) to tanS(x)).

4. h̄ expansions

The link between the solutions of the quantum and semi-classical Ermakov systems is done
by employing a formal ¯h expansion of the amplitude function. As in the previous section, we
assumeI andW to be identical in both the quantum and the semi-classical case. It is then
straightforward to show that to each order in ¯h (as well as to infinite order), non-oscillatory
functions are obtained.

4.1. Series expansions

The formal asymptotic solution to the Schrödinger equation for small values of the parameter
h̄ is usually done by transforming it to the Riccati form and then obtaining a recurrence relation
between complex function of orderj and the functions of lower order [10]. Here we proceed
slightly differently, because we want the relations between the amplitude and the phase to
be verified to each order. We look for a generic solution of equation (3) under the form
u(x) = a(x) exp if (x)/h̄, where a(x) and f (x) are real functions admitting the series
expansions

a(x) =
∞∑
j=0

aj (x)h̄
j f (x) =

∞∑
j=0

fj (x)h̄
j . (34)

Substitution into the Schrödinger equation givesaj (x) = 0, fj (x) = 0 for odd j and the
following recurrence relations for evenj, j � 2:

∂xfj (x) = 1

2a0∂xf0


∂2

xaj−2 −
j−2∑
m=2

am

j−m∑
n=0

∂xfn∂xfj−m−n


 (35)

aj (x) = bj√
∂xf0

−
j−2∑
n=0

∫ (
2∂yan∂yfj−n + an∂2

y fj−n
)/√

∂yf0 dy

2
√
∂xf0

(36)

with f0(x) = ±S(x), a0(x) = ±∂xf−1/2
0 , and where the constantsbj appearing in the solution

to the homogeneous equations foraj(x) are all set to 0 forj � 2. The Wronskian relations are
then preserved to each order in ¯h, that is

W [a(x) sinf (x), a(x) cosf (x)] = a2
0(x)∂xf0(x) = ∂xS(x)/p(x) = 1. (37)
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Between the turning points, the± branches are combined to yield real oscillatory
functions. The formal expansion foru1 (assuming again the adequate integration constant
to be included inf0) is then given by

u1(x) =
√

2I
∞∑
j=0

aj (x)h̄
j sin

( ∞∑
i=0

fi(x)h̄
i

)
. (38)

The expansion for the function laggingπ/2 out of phase is trivially obtained by using the cos
function; from equations (13) to (15) the formal expansion foru2 is then found as

u2(x) =
∑∞
j=0 aj (x)h̄

j

√
2I

[
W cos

( ∞∑
i=0

fi(x)h̄
i

)
− I [4 −W2/I2]1/2 sin

( ∞∑
i=0

fi(x)h̄
i

)]
.

(39)

To first order these functions coincide by construction with the semi-classical wavefunctions
ũ1 andũ2.

4.2. Amplitude and phase expansions

Theh̄ expansions for the amplitude and phase functions are obtained by combining the non-
linear superposition principle [equations (8) and (9)] with the formal series expansions foru1
andu2. The expansions may be done to finite or infinite order. In the first case, the functions
are Taylor expanded around ¯h = 0 after separating the classical termsa0 andf0. The infinite-
order case is analogous to the first-order case treated in section 3.4. For example, substituting
the series expansions in equation (9) gives the expression (modπ ) of the phase which can be
simplified as

φ(x, c) = arccot

{
cot

(
S(x)

h̄
+

∞∑
i=1

fi(x)h̄
i−1

)
−
[
2Ic(E) + IW−1[4 −W2/I2]1/2

]}
.

(40)

The amplitude function may be obtained by deriving equation (40), keeping in mind the
Wronskian relations (37), yielding an expression involving the sines and cosines of the
expression between parentheses. In both cases, the highly oscillatory terms are cancelled
by settingc = c0 (in equation (40) for example, the term between square brackets then
vanishes).

5. Discussion

5.1. General remarks

We have thus seen that same value ofc gives rise to non-oscillating functions both in the
semi-classical and quantum cases. This is not surprising, if the similarities between equations
(30), (39) and (19) on the one hand, together with the non-linear superposition principle in
both the quantum and semi-classical Ermakov systems on the other hand are considered: the
same functional relation gives the amplitude–phase functions in both cases. We note however
that the simple arguments we have given above, although physically appealing because of
the direct connection to standard classical quantities, are liable to a more rigorous treatment.
For example the series expansion obtained for the amplitude function does not necessarily
converge, and even its asymptotic properties as a function of the parameterc deserve a more
thorough investigation. Actually, Lewis had made the same remarks when studying the
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adiabatic invariant series of the time-dependent classical harmonic oscillator in powers of an
adiabatic parameterε [11], which is defined by the same uncoupled Ermakov system as the
one studied in this paper. Lewis’s work was the first (albeit implicit) application to Ermakov
systems of Kruskal’s asymptotic theory of Hamiltonian systems extending the study of the
adiabatic invariants beyond the first order inε [12]. The transposition of these theories to
the present problem is not straightforward because we lack here the Hamiltonian formalism
on which these theories are based (e.g. the integral invariants that appear in Kruskal’s theory
would have here a rather obscure interpretation). Nonetheless, the present results on the
oscillatory properties can be directly transposed to any uncoupled Ermakov system depending
on an ‘adiabatic’ parameterε (which in the present context corresponds of course to the Planck
constant).

5.2. Scattering basis functions

Previously to the work of Fanoet al [13], the use of amplitude–phase methods in scattering
theory was limited to the high kinetic energy limit, and the derivatives of the phaseφ above
first order neglected, thereby effectively restricting the treatment from the start to the standard
WKB approximation (see e.g. chapter 4.3 of [14]). The more recent application of these
methods to define a pair of basis functions for phase-shifted wavefunctions in a potential (as
outlined above) relies on numerical treatments to minimize the oscillations; these treatments
are preferredeven in the cases for which an analytic pair of basis functions is known, such as the
Whittaker functions for the centrifugal Coulomb problem or the parabolic cylinder functions
for the harmonic oscillator. It is interesting to note that the approach suggested in section 2.3
yields, for an arbitrary potential with a single minimum, the same relations that are known to
be valid (and non-oscillating) for the analytic functions in the mentioned special cases (e.g.
in the Coulomb case where the effective quantum numberν is defined asν = ξ−1(E) + l,
the accumulated phase obtained with the Whittaker functions isφ(∞) = π(ν − l) and
improper normalization follows the normalization of the eigenfunctions by normalizing to
ν3/2, independently ofν being real or an integer [15]).

From a formal standpoint, defining a specific basis of functions is equivalent to defining
the Green’s function of the scattering process in the asymptotic field. This is the Green’s
function that appears in the Lippmann–Schwinger equations and through which the collision
operators are defined. This is why the collision operators depend on the parameterc. Though
at first sight this may appear as an unexpected feature, it must be remembered that the explicit
inclusion of closed channels leads to a modification of the usual Green’s functions through a
term depending on the accumulated phase [16].

5.3. Semi-classical limit and classical quantities

Standard semi-classical physics is usually not concerned with the quantum to classical limiting
procedure, because the strategy there is to start from classical quantities at the outset and then
proceed to quantization. However, we have seen in section 3 that the classical reduced action
is only one of the many phase functions that are obtained in the semi-classical limit (namely
the non-oscillating one). This type of problem is frequent in ‘classicalization’ procedures:
a particular, often arbitrary choice has to be made to recover classical quantities (action,
Liouville equation, etc.). A recent example is given in reference [17], where the passage from
Hilbert-space to classical-phase space operators involves particular choices for the parameters
in order to recover the classical dynamics. In other works, this requirement takes the form
of an additionalad hoc condition usually termed as the ‘correspondence principle’ (e.g. in
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reference [18] where a quantum version of the Hamilton–Jacobi equation is given an additional
boundary conditionpquantum(x,E) → pclassical(x,E) whenh̄ → 0 andE is fixed)3. Though
much less general, our treatment is more transparent in that the continuation of the classical
reduced action in the quantum domain is readily identified: it is the non-oscillating phase
function (and the continuation of the classical probability amplitude is the non-oscillating
amplitude function).

Other aspects of the classical-quantum correspondence for a classically integrable and
separable system deserve to be mentioned. The accumulated phase (equations (10) and (11))
is seen to be directly related to the line integral around a closed loop ofα−2:∮

[∂xφ(x, c)] dx = 2φ(s2, c). (41)

In contrast to EBK (torus) quantization, there are no caustics when dealing with exact
quantization, and the quantization condition reads

∮
[∂xφ(x, c)] dx = 2πn, i.e.,n is an integer

and the line integral does not depend on the particular value ofc. Here we understand by
‘exact quantization’ the quantization of the exact quantum phase, and not the exact WKB
quantization of non-solvable potentials, as employed by Voros [19]. Note however that when
c = c0, the (unquantized) integral (41) reads, according to equation (24), as∮

[∂xφ(x, c0)] dx = 2πn(E). (42)

Not only doesc = c0 preserve for non-integer real numbers the functional relation valid for
exact quantization, but it gives a parameterization of the quantum equivalent of the canonical
action variable.

In a similar vein, the period of motionT is given in the Hamilton–Jacobi theory by taking
the energyderivative of the reduced action along the closed loop. The transposition to the phase
function in the quantum case would imply taking the energy derivative of equation (41), which
by equations (11) and (22) is proportional to the normalization. Again, the normalization
depends onc(E ) and to take∂Eφ(c) as the time parameterization does not appear to make
much sense unlessc = c0, since any other value would lead to an oscillating function, which
would further not collapse to the classical period in the ¯h→ 0 limit.

5.4. Example

We illustrate the properties mentioned above on the harmonic oscillator, a paradigm both in
the Hamilton–Jacobi formulation of classical mechanics [20] and in the semi-classical theory
of bound states [21]. The reduced actionS(x, E ) of equation (26) is readily obtained, from
which it follows that

∂xS = (2mE −m2ω2x2)1/2 (43)

J ≡
∮

[∂xS] dx = 2πE/ω (44)

wherem andω are the mass and frequency of the oscillator respectively; we slightly depart
from usual conventionsand defineJ to be the canonical action variable. The period is recovered
asT = ∂EJ . The standard WKB solutions between the caustics, equations (29) and (30), are

3 Other authors crudely suppress the ¯h-dependent terms in selected equations where this suppression leads to
classical relations (e.g. this would be done in equation (4) by giving the amplitude squared the dimensions of a
classical quantity, thereby getting rid of∂2

xα, but would not be done in equation (3), which does not support an
obvious classical interpretation). This procedure has often been criticized because the functions and the parameters
appearing in the equations depend on ¯h.
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Figure 2. The positive branch of the classical canonical momentump(x) for a harmonic oscillator
(ω = 1, atomic units) is plotted (lower solid line) versus the ‘quantal momentum’∂xφ(x, c) i) for
an arbitray value ofc (dashed line) andii) for the non-oscillating valuec = c0 (upper solid line).

obtained from these classical quantities. Semi-classical quantization must take into account
the singularities at the turning points, from which it follows thatE0 = h̄ω (n + 1/2), with n
being an integer.

Quantum mechanically, the eigenvalues are given byξ(n) = h̄ω (n + 1/2) whenn is an
integer that counts the zeros of the eigenfunction, but this relation can be extended for any
real value ofn, as discussed in section 2.3.4. We then writeξ−1 asn(E) = E/h̄ω− 1/2. The
derivative of the exact (quantum) phase is given by equations (7) and (8) as

∂xφ(x, c) = mω

h̄

[(
1

2I
+ 2Ic2

)
u2

1(x) +
2I

W2u
2
2(x)−

4Ic

W
u1(x)u2(x)

]−2

. (45)

Figure 2 compares the classical conjugate momentum as given by equation (43) with two
exact phases ¯h∂xφ(x, c) obtained from equation (45) by using numerical solutions of the
Schr̈odinger equation,u1 andu2, with respective vanishing boundary conditions atx = −∞
andx = +∞. One of the curves is for an arbitrary value ofc, the other corresponds toc = c0.
It may be seen that even for a moderate excitation (n ≈ 12), the non-oscillating solution with
c = c0 can barely be distinguished from the classical momentum at the same energy, except
near the turning points (the reason is that〈S; x〉 is negligible, hence the exact quantum phase,
solution of equation (6) tends to the semi-classical quantum phaseφ̃ of equation (28), which
is simplyS(x) whenc = c0).

The analogue of the canonical actionJ appears as the line integral (41), which generally
depends onc except whenn is an integer in which case

∮
[h̄∂xφ(x, c)] dx = 2πh̄n. Thus for

the quantized energies, the quantal line integral differs fromJ by the Maslov index. However,
if c = c0, we have for anyE [equation (42)]∮

[h̄∂xφ(x, c0)] dx = 2πE/ω − h̄/2 (46)

which is the classical result with an action correction coming from the Maslov index. Note that
taking the energy derivative of equation (41) crucially depends, forany energyE (including
the eigenvalues), on the energy dependencec(E). Only the energy dependence given by the
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relation (23), which yields equation (46) in this case, renders the usual relation for the period,
and more generally follows the classical time parameterization for conservative systems in the
Hamilton–Jacobi theory. Thus, the parameterc, which appears free within quantum mechanics
and has no classical counterpart, must be constrained if the usual classical relations for the
oscillator are to be extended to quantum amplitude and phase functions.

The usual interpretation of the invariant within Ermakov systems hinges on the use of
an original Hamiltonian or Lagrangian, from which the Ermakov equations are derived. The
invariant is then associated, by means of Noether’s theorem, with the conserved quantity of
an auxiliary motion [5, 6]. Such an interpretation is of course not available here, where the
Ermakov equations are used in a quantum-mechanical context. The invariantI is employed in
this context only to define the normalization, through equation (12). However, for the choice
c = c0, a further interpretative step may be taken, since then the term on the right-hand side
in equations (12) or (22) gives

h̄

2m
I∂E

∮
[h̄∂xφ(x, c0)] dx. (47)

For the harmonic oscillator, we have by equation (46) and by adopting unity normalization

I = mω

h̄π
. (48)

For other systems,I usually depends onn(E) except if the wavefunctions are energy-
normalized. Elementary manipulations yield the more general form

I = 2π

[∫
λ(x,E) dx

]−1

(49)

whereλ(x,E) is the local de Broglie wavelength and the range of integration is restricted to
the classical domain between the turning points.

6. Conclusion

Previous interest in amplitude–phase methods led us to investigate in this work the oscillatory
properties of the non-linear equation of uncoupled Ermakov systems. It was shown that
non-oscillating amplitude–phase functions in the space and energy variables have a particular
feature in the semi-classical limit: they yield classical quantities. We have seen that although
standard quantum-mechanical quantities, such as the wavefunctions or the eigenvalues, are
insensitive to the value of the parameterc and its energy dependence, there is a unique value
of c which appears as connecting quantum amplitude and phase functions to their classical
counterpart. Only in this case can ‘quantum characteristics’(x, ∂xφ) having a sense, and
collapsing to(x, ∂xS) whenh̄→ 0 be defined. We insist again that from the point of view of
quantum mechanics, even in the semi-classical limit, this need not be the case: any amplitude
and phase functions obeying equation (33) will yield correct semi-classical wavefunctions. A
full study of these aspects on specific physical systems will be given elsewhere. Further links
with current work on Ermakov systems may lead to a better appreciation, as well as to an
extension, of the formalism.
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